Abstract
The disinfection of drinking water, while critical for public health, leads to the formation of disinfection byproducts (DBPs). Toxicological and epidemiological studies have demonstrated that exposure to disinfected water samples may pose adverse effects on human health. Recent research highlights the potential greater toxicity contribution of DBP fractions with high molecular weight (MW) (with more than two carbon atoms) compared to regulated low MW DBPs, emphasizing the need for advanced analytical techniques to identify and characterize these fractions. In this review, we summarize different analytical techniques for indirectly assessing DBP precursors and directly analyzing DBPs, discussing their advantages and limitations. Additionally, since identifying DBP toxicity agents in complex water mixtures is crucial for further optimizing water disinfection and controlling DBP formation, key DBP identification methods based on both chemical and bioassay metrics are also included and discussed. Finally, we highlight three important aspects for the future development of analytical methods to enhance the understanding of high MW DBP formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.