Abstract

In this work, the superabsorbent polymer hydrogel (SPH) of Poly(potassium acrylate-co-acrylamide (PPAA)) incorporated with Fe-Mn binary oxides (FMBOs) was synthesized and used for the removal of Sb(III) from water. Characterization analysis proved that FMBO3 was successfully encapsulated into the SPH. The Fe/Mn oxide species in the composite SPH comprised FeO(OH), Fe2O3, MnO(OH), and MnO2. The functional groups including N–H, –OH, carboxy as well as Fe atoms were confirmed adsorption sites through ligand exchange and inner-sphere complexes formation. Mn oxides can partially oxidize Sb(III) to Sb(V). Compared with the pseudo-first-order model, the pseudo-second-order model could better describe the adsorption kinetics. And the swelling degree of the composite SPH had a positive impact on the removal rate. The Langmuir-Freundlich model was the most suitable isotherm model to analyze the experimental data. According to thermodynamic parameters, the adsorption process was a spontaneous exothermic reaction. The maximum adsorption capacity of the composite SPH for Sb(III) could be up to 105.59 mg/g at 288 K. In addition, a stable removal rate can be achieved over a wide pH range of 3–10, with little metal leaching even under acidic conditions. Furthermore, coexisting ions and DOM displayed an insignificant influence on the adsorption of Sb(III).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.