Abstract
This study addresses the need for high-performance and sustainable air filters by developing a bio-based, high-efficiency particulate air (HEPA) filter. Current HEPA filters often rely on non-biodegradable materials, creating environmental burdens. In this paper, we presented a HEPA filter fabricated from natural basalt fiber (BF) and nanocellulose fiber. The developed filter featured a sandwich structure with electrospun nanocellulose fiber deposited onto a base BF layer, followed by a second BF layer and heat treatment. Various techniques were employed to characterize the obtained sample, and the results showed that the nonwoven BF fabric significantly reduced the pressure drop of the filter by up to 60 %. The nanocellulose fiber played a crucial role in achieving a remarkable filtration efficiency of 99.99 % for PM0.3. BF-based filter demonstrated exceptional fire resistance, hydrophobia, durability, and ease of cleaning, maintaining its effectiveness at temperatures up to 150 °C. Notably, it exhibited significantly better biodegradability than commercially available HEPA filters. By employing a hierarchical structure of sustainable basalt and cellulose fibers, this study paved the way for the development of next-generation hazardous particulate matter filters with exceptional performance in harsh conditions and reduced environmental impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.