Abstract

In this work, we demonstrate simultaneous phase-contrast imaging (PCI) and X-ray diffraction from shock compressed matter at the Matter in Extreme Conditions endstation, at the Linac Coherent Light Source (LCLS). We utilize the chromaticity from compound refractive X-ray lenses to focus the 24.6 keV 3rd order undulator harmonic of the LCLS to a spot size of 5 μm on target to perform X-ray diffraction. Simultaneous PCI from the 8.2 keV fundamental X-ray beam is used to visualize and measure the transient properties of the shock wave over a 500 μm field of view. Furthermore, we demonstrate the ability to extend the reciprocal space measurements by 5 Å−1, relative to the fundamental X-ray energy, by utilizing X-ray diffraction from the 3rd harmonic of the LCLS.

Highlights

  • In this work, we demonstrate simultaneous phase-contrast imaging (PCI) and X-ray diffraction from shock compressed matter at the Matter in Extreme Conditions endstation, at the Linac Coherent Light Source (LCLS)

  • We utilize the chromaticity from compound

  • Knowledge of the behavior of matter at extreme pressures and temperatures is necessary for understanding materials at the core

Read more

Summary

Introduction

We demonstrate simultaneous phase-contrast imaging (PCI) and X-ray diffraction from shock compressed matter at the Matter in Extreme Conditions endstation, at the Linac Coherent Light Source (LCLS).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.