Abstract

A modified Volume-of-Fluid numerical method is developed to predict the transient deformation of a viscoelastic drop surrounded by a more viscous Newtonian liquid passing through an axisymmetric microfluidic contraction. Viscoelastic effects are represented using an Oldroyd-B rheological model and can be generated in practice by the addition of small amounts of polymer. The numerical method is tested against experimental observations of viscoelastic drops forming at nozzles. We show that these simulations reliably reproduce flow and drop deformation. Predictions of drop shape and elastic extension are then presented and discussed for drop motion through a microfluidic contraction, and these results are compared against results for an equivalent Newtonian only system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.