Abstract

This work presents numerical simulations of turbulent flow, mass transport and tertiary current distribution on the cathode of a rotating cylinder electrode reactor (RCE) in a continuous operation mode. A configuration of a RCE with electrolyte inlet at the bottom and the electrolyte exit at the top was employed. Silver electrodeposition (12.15 mol m−3 (1300 ppm) Ag(I), 883.5 mol m−3 (23000 ppm) CN−, pH 13 and 150 mS cm−1 conductivity) was used as a test system. Bulk electrolysis in the RCE was performed at a constant potential of − 1.2 V vs. SCE, which ensured complete mass transport control. A constant volumetric inflow rate of 0.1 L min−1 at the RCE inlet was employed. CFD simulations were obtained solving the RANS equations with the standard k − ε turbulence model. For mass transport simulations, the averaged diffusion-convection equation was solved. For the simulations of tertiary current distribution, wall functions were employed. The tertiary current distribution on the RCE interface along the z-coordinate presented one border effect close to the electrolyte inlet, afterwards, even current distribution was obtained. The border effect is created by the abruptly silver concentration depletion at the electrolyte inlet. Good agreement between mass transport correlation and current distribution simulations with experimental data were attained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.