Abstract
This paper presents the design of and transient time simulations for a four-pole magnetic bearing with permanent magnets. The usage of permanent magnets reduces the consumption of electric energy in comparison to a traditional active magnetic bearing. Permanent magnets are installed in the yoke of the stator core to limit the cross-coupling of the magnetic flux generated by the windings. The first part of this paper presents the design of the magnetic bearing and its finite-element model, while the second part describes the field-circuit indirectly coupled finite-element model for the transient time simulation. The presented simulation model was used to calculate the transient response for the rotor lifting from the starting position, the step change in the rotor position and the change in the rotor position under an external impact force applied along the y-axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.