Abstract

Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures TB's of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere TB's for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.3 1, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of TB's for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on TB of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU TB's. Both liquid and ice clouds impact the TB's in a variety of ways. The TB's at 23.8 and 89 GHZ are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a water impact on 157- and 183-GHz TB's than do lower clouds. Clouds depress TB's of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, TB's are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 µm near 157 and 183 GHz, and greater than 30–40 µm at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30–40-µm range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call