Abstract
Abstract Lean and dilute gasoline compression ignition (GCI) operation in spark ignition (SI) engines are an attractive strategy to attain high fuel efficiency and low NOx levels. However, this combustion mode is often limited to low-load engine conditions due to the challenges associated with autoignition controllability. In order to overcome this constrain, multi-mode (MM) operating strategies, consisting of advanced compression ignition (ACI) at low load and conventional SI at high load, have been proposed. In this three-dimensional computational fluid dynamics study, the concept of multi-mode combustion using two RON98 gasoline fuel blends (Co-Optima Alkylate and E30) in a gasoline direct injection (GDI) engine were explored. To this end, a new reduced mechanism for simulating the kinetics of E30 fuel blend is introduced in this study. To cover the varying engine load demands for multi-mode engines, primary combustion dynamics observed in ACI and SI combustion modes was characterized and validated against experimental measurements. In order to implement part-load conditions, a strategy of mode transition between SI and ACI combustion (i.e., mixed-mode combustion) was then explored numerically by creating a virtual test condition. The results obtained from the mixed-mode simulations highlight an important feature that deflagrative flame propagation regime coexists with ignition-assisted end-gas autoignition. This study also identifies a role of turbulent flow property adjacent to premixed flame front in characterizing the mixed-mode combustion. The employed hybrid combustion model was verified to perform simulations aiming at suitable range of multi-mode engine operations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have