Abstract
Simulations of channel flows with effects of spanwise rotation and wall injection are performed using a Reynolds stress model. In this work, the turbulent model is extended for compressible flows and modified for rotation and permeable walls with fluid injection. Comparisons with direct numerical simulations or experimental data are discussed in detail for each simulation. For rotating channel flows, the second-order turbulence model yields an asymmetric mean velocity profile as well as turbulent stresses quite close to DNS data. Effects of spanwise rotation near the cyclonic and anticyclonic walls are well observed. For the channel flow with fluid injection through a porous wall, different flow developments from laminar to turbulent regime are reproduced. The Reynolds stress model predicts the mean velocity profiles, the transition process and the turbulent stresses in good agreement with the experimental data. Effects of turbulence in the injected fluid are also investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have