Abstract

The shape of biomass particles influences intra-particle heat transfer, particle-particle collisions, interphase momentum, heat transfer, and pyrolysis yield. In this research, the effects of these multi-scale phenomena are captured using a glued-sphere computational fluid dynamic discrete element method (CFD-DEM) with 3-D intra-particle models. The glued-spheres resolved the shapes of particles and intra-particle temperature and species distributions. The implementation was validated using the pyrolysis data of a spherical particle and a cylindrical particle. Then, the influences of biomass shapes and sizes on pyrolysis were investigated. The results revealed the significant influence of surface areas and mass distributions on interphase heat transfer and chemical reactions. The intra-particle heat transfer is neglectable for a Biot number smaller than 0.41. Finally, the pyrolysis of irregularly shaped biomass particles in a fixed bed, fluidized bed, and spouted bed was simulated. Analysis of conversion distributions showed the largest deviations in the fixed bed and the slowest conversion rate in the spouted bed. A good balance between uniform and fast conversion is achieved in the fluidized bed. The multi-scale method proposed in this research provides a tool for the evaluation of large irregular-shaped biomass particle pyrolysis in different types of reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.