Abstract
This paper presents the results of a simulation-based performance comparison between dynamic cellular (DC) manufacturing systems and two other well-known systems, namely classical cells (CC) and job shop systems (JS). The performance comparison is made at different levels of turbulence. The experiment contains 13 independent variables, most of them related to demand turbulence, and 17 dependant variables related to performance measure. A stochastic simulation model developed on Microsoft Visual FoxPro 5.0 was used in combination with LINDO (a linear/integer programming software) to obtain the initial results. In view of the large number of variables and the time required to run each experiment, a Taguchi plan was used to optimize the model. The results obtained from the analysis of variance indicate that dynamic cellular manufacturing systems are generally more efficient than classical cellular systems or job shop systems, especially with respect to the average and maximum throughput time, mean and maximum work-in-process, mean and maximum tardiness, and the total marginal cost for a given horizon.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have