Abstract
Performing physical acceptance tests of an Unmanned Ground Vehicle (UGV) can be expensive and time-consuming. This paper discusses simulation-based acceptance testing and failure analysis for UGVs. Both dynamic and static simulation models are developed. A systematic statistical testing approach is presented to quantitatively assess when a simple static simulation model can be used to approximate a complex dynamic simulation. Results show that a static simulation can be used to determine the required joint motor torques under slow operation speeds. It also shows that a dynamic simulation model is needed to determine the maximum allowable moving speeds for UGVs to safely operate on roads with various levels of roughness and bumpiness.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have