Abstract

In the last decade, a large number of experiments have been performed in order to understand the thermal-hydraulic response in a boiling water reactor (BWR) under postulated loss of coolant accident (LOCA) conditions. These experimental results showed that the core cooling effect under the LOCA conditions was significantly affected by three-dimensional and multi-bundle phenomena after emergency core cooling systems (ECCSs) started. Also, the peak cladding temperature (PCT) during the LOCA was kept below a specific value of the licensing acceptance criteria, 1473 K (1200°C). These key results of the experiments were incorporated into a computer code, SAFER, which was developed for the BWR LOCA/ECCS analyses under the cooperative studies of Hitachi Ltd, Toshiba Co., and General Electric Co. (GE). In a couple of years, the experimental study of multi-bundle phenomena was extended into the area of off-normal and non-LOCA transients. Thermal-hydraulic responses during boiling transition were studied using the TBL (Two Bundle Loop) test facility with two full-length bundles. The experimental results showed that interaction and feedback effects between the bundles were expected to be unaffected by core cooling during the typical off-normal and non-LOCA transients. Also, the SAFER showed good predictions for hydraulic responses in the bundles and temperature transients of the rod surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call