Abstract

Mineral extraction can significantly affect the groundwater flow and hydrochemical environment. However, for hilly areas, significant ground elevation changes and complex geological conditions make it difficult to accurately analyze and predict the impact of mineral mining. This study takes the Nuodong rare earth mining area as an example. Based on field investigations and experiments, GOCAD software (version 2022) was used to establish a geological model in combination with GMS numerical simulation software, which was used to build a groundwater flow model and a solute transport model. The flow model in the hilly area indicated that the absolute error between the simulated and measured water levels of each observation well is 0.554 m. The solute-transport model showed that the maximum pollutant concentration of ammonia-nitrogen (NH3-N) in the liquid injection area, stream area, and village area monitoring wells reaches 139.15, 27.9, and <0.5 mg/L, respectively. During the mining period, streams in the area are affected by NH3-N, which threatens the safety of the water for mine area residents. To control pollutant transport, two stages of pumping were adopted to reduce NH3-N concentrations in groundwater. After adopting the first stage, the peak concentration of the stream area monitoring wells decreased significantly, with the maximum peak concentration decreasing from 27.9 mg/L to 5.51 mg/L. Based on the results of the first stage of the pump-out treatment, a second stage was adopted. The model results showed that the peak concentration of NH3-N pollutants discharged into the stream is less than 0.5 mg/L. The results provide a theoretical basis and reference for groundwater monitoring and pollution control after mining in this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call