Abstract

In this study, a solar single/double-effect switching LiBr-H2O absorption refrigeration system was investigated to make full use of solar energy and give full play to the advantages of solar refrigeration systems. A corresponding thermodynamic dynamic mathematical model was developed. The operation characteristics of the system operating continuously for one week were analyzed. In order to highlight the advantages of the solar single/double-effect switching absorption refrigeration system, it was compared with other forms of solar refrigeration systems and compression refrigeration systems. The practical application potential of the single/double-effect switching LiBr-H2O absorption refrigeration system was evaluated from the perspective of economy and environmental effect. The results showed that the system could achieve the switching operation between single-effect mode and double-effect mode under weather conditions of high solar radiation intensity, and the daily cooling efficiency on such days was relatively high. After an auxiliary heater was added, the primary energy savings of the solar single/double-effect switching LiBr-H2O absorption refrigeration system were 25–52%, depending on the area of the collector and the volume of the storage tank. The solar fraction of the system was about 71.99% for continuous operation during the whole refrigeration season. However, the initial investment cost of the system equipment accounted for 89.66% of the total cost. Compared with the traditional compression refrigeration system, the initial investment cost of the solar single/double-effect switching LiBr-H2O absorption refrigeration system was higher, but it had a better environmental protection effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call