Abstract

This study proposes a tailored laser heat source model for the finite element analysis of the laser cladding process. The beam characteristics, including wavelength, beam radius, TEM mode and focusing conditions, were comprehensively considered in the heat source model. The model was integrated in a SYSWELD package to predict the temperature distribution and clad bead profile during laser cladding of preplaced cobalt powder layer on a steel substrate. Cladding process parameters were evaluated by varying the TEM mode, focusing conditions, wavelength and scanning speed. Single mode and tailored multi-mode TEMmixed laser beams were established for simulation. The numerical results were verified by performing a laser cladding experiment under the same conditions as the numerical model. The clad bead geometries predicted from the numerical simulation agreed well with those obtained from experiment. Thanks to the comprehensive feature of the proposed tailored laser heat source model, it also could be well applied to the numerical simulation of other laser material processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.