Abstract

The co-combustion of various ultra-low volatile coal-based solid fuels (UVCFs) under oxy-fuel condition could consume semi-coke and residual carbon cleanly and efficiently. However, the fuel-nitrogen (fuel-N) migration behaviors of various UVCFs blends in O2/CO2 atmosphere are still unclear. In addition, the heterogeneous reactions on surfaces of char could also affect the synergistic effects between various UVCFs blend. Here, the fuel-N migration features of various UVCFs in O2/CO2 atmosphere were investigated by Chemkin simulation and the oxy-fuel co-combustion mechanism of various coal-based solid fuels (OCF mechanism) included heterogeneous reactions was developed. Moreover, the methods of sensitivity and rate of production analyses were both employed to clarify the synergistic effects on nitrogen conversion pathways of various blends. The heterogeneous reaction between char and NO (R15) is the key reaction for NO reduction in primary zone. The free radicals OH and H provided by UVCFs could react with main NO precursors NCO, HNCO, HOCN, NH and NH2 to generate NO. The conversion pathways of HCN to NO are more complex than those of NH3 to NO. The rises of residual carbons proportions and temperature in primary zone (T1) could both reduce the NO formation amount due to the promoted R15. The sensitivity coefficients (S) on NO formation of 50% SS/50% CR blend in the burnout zone are lower than those of 50% SS/50% FR blend. The transformations of HNCO, HNO and NO2 to NO and the heterogeneous reactions of NO could both be enhanced with the O2 concentration in burnout zone. The increasing burnout air position (Pb) results in the rise of NO generation owing to that the NO reducing reactions R15 and R16 are greatly inhibited with the Pb raised. The present study could be beneficial for the clean and effective utilization of UVCFs, together with the reduce of NOx emission and realization of carbon neutral in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call