Abstract

In this paper, the performance criteria for various four-wheeled mobile robots that are crucial for assessing a robot’s fitness for mobility to successfully complete missions are introduced. The seven proposed performance indices, the root mean squared acceleration (RMSA), posture variance index (PVI), static stability margin (SSM), force angle stability margin (FASM), energy stability margin (ESM), friction requirement (μr), and velocity constraint violation (VCV), address the fluctuation, rollover, and slippage problems in four-wheeled mobile robots. The simulations considered a square bump-shaped obstacle, and the dimensions of the robot were based on nine simulation cases in a 3D environment. Additionally, a methodology for evaluating these seven criteria is outlined. To streamline the simulation process, Taguchi’s catalog of orthogonal arrays (OAs) was used for the experimental design, specifically L9 OA with four factors and three levels was used. Analysis of means (ANOM) was applied to assess the influence of each design factor on the seven criteria, leveraging the OA orthogonality. Finally, the sensitivity analysis and potential for evaluating general mobile robots in the future are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.