Abstract

By the self-consistent solution of the Schrödinger and poisson equations, the effects of GaN channel layer, AlGaN back barrier layer with and without Si doping and AlN interlayer on two-dimensional electron gas in N-polar GaN/AlGaN heterostructure are systematically studied. The results indicate that the increases of the thickness values of GaN channel layer and AlGaN back barrier layer and Al content value can improve the density of 2DEG to a certain degree, and the influences of different Si doping forms on 2DEG sheet density are not the same, also the confinement of 2DEG could be strengthened by increasing Al content value and thickness value of the AlGaN barrier layer. The AlN interlayer is a comparatively outstanding one in improving the performance of the 2DEG such as the 2DEG sheet density and confinement. When GaN channel layer thickness is less than 5 nm, there is no 2DEG in the simulation, when it exceeds 20 nm the 2DEG sheet density tends to be saturated. 2DEG has a tendency to be saturated when the thickness value of AlGaN back barrier is more than 40 nm. 2DEG sheet densities with uniform doping and delta doping in AlGaN back barrier are saturated when the doping concentration is more than 5×1019 cm-3. The 2DEG sheet density could be increased from 0.93×1013 cm-2 without AlN interlayer to 1.17×1013 cm-2 with 2 nm AlN interlayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.