Abstract

We present a numerical study of the surfing mechanism in which electrons are trapped in Bernstein–Greene–Kruskal (BGK) modes, and are accelerated across the magnetic field direction by the Lorentz force in magnetized space plasmas. The BGK modes are the product of an ion-beam Buneman instability that excites large-amplitude electrostatic upper-hybrid waves in the plasma. Our study, which is performed with particle-in-cell (PIC) and Vlasov codes, reveals the stability of the BGK mode as a function of the magnetic field strength and the ion beam speed. It is found that the surfing acceleration is more effective for a weaker magnetic field owing to the longer lifetime of the BGK modes. The importance of our investigation to electron acceleration in astrophysical environments has been emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.