Abstract

In this paper, the effect of Coulomb collisions on the stability of Bernstein–Greene–Kruskal (BGK) modes [I. B. Bernstein, J. M. Greene, and M. D. Krukal, Phys. Rev. 108, 546 (1957)] is analyzed by comparing the numerical results of collisional particle-in-cell (PIC) simulations with the theoretical predictions by Zakharov and Karpman [V. E. Zakharov and V. I. Karpman, Sov. Phys. JETP 16, 351 (1963)], for the collisional damping of nonlinear plasma waves. In the absence of collisions, BGK modes are undamped nonlinear electrostatic oscillations, solutions of the Vlasov–Poisson equations; in these structures nonlinearity manifests as the formation of a plateau in the resonant region of the particle distribution function, due to trapping of resonant particles, thus preventing linear Landau damping. When particle-particle Coulomb collisions are effective, this plateau is smoothed out since collisions drive the velocity distribution towards the Maxwellian shape, thus destroying the BGK structure. As shown by Zakharov and Karpman in 1963, under certain assumptions, an exponential time decay with constant damping rate is predicted for the electric field amplitude and a linear dependence of the damping rate on the collision frequency is found. In this paper, the theory by Zakharov and Karpman is revisited and the effects of collisions on the stability of BGK modes and on the long time evolution of nonlinear Landau damping are numerically investigated. The numerical results are obtained through a collisional PIC code that reproduces a physical phenomenology also observed in recent experiments with trapped pure electron plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.