Abstract

The present study involves the simulation of a constant volume, non-premixed, hot surface spray combustion of diesel fuel for a given set of injection pressure, compressed air pressure (cylinder air pressure) and hot surface temperature (hot plate temperature) and their effects on ignition delay period. Fuel injection pressure was varied from 100 bar – 300 bar in steps of 100 bar, cylinder air pressure in the range of 20 bar to 40 bar (in steps of 10 bar) and hot surface temperature from 623 K to 723 K (50 K steps). The problem was solved using 2D axisymmetric geometry. A structured mesh of about 1.24 lac nodal points was created and tested for grid independency. For solving flow behavior, a pressure solver was used with a turbulence model of k-ε with enhanced wall functions. While a volumetric eddy dissipation model was used to solve combustion phenomena. Ignition delay period was calculated with the help of static temperature versus time plot. It is found that keeping any two operating parameters constant, third operating parameter is inversely proportional to ignition delay period. The results of the present simulation study are in a fairly good agreement with the experimental studies at same operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.