Abstract

Results of numerical simulation studies of processes associated with Stimulated Electromagnetic Emission (SEE) produced during ionospheric heating experiments are presented. A one-dimensional magnetized electrostatic Particle-In-Cell (PIC) simulation model with uniform plasma density is used to investigate electrostatic wave generation in the region where the pump frequency ω 0 approximately equals the upper hybrid frequency ω uh . In particular, the simulation plasma is driven with a uniform oscillating electric field to represent the long wavelength pump wave and power spectra of the electrostatic waves produced are taken. The pump wave frequency and amplitude are varied to consider the effects on the simulation power spectrum. The upper hybrid frequency in the model is varied through harmonics of the electron cyclotron frequency Ω ce to consider the effects of stepping the pump frequency through cyclotron harmonics. The power spectrum from the simulation plasma is richly structured. The resulting power spectra show sidebands upshifted and downshifted from the pump frequency by multiples of the lower hybrid frequency ω lh . The structure of the spectrum is highly sensitive to the proximity of the upper hybrid frequency to the cyclotron harmonic frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.