Abstract

The completion time of discharging has been reduced in current study with installing fins and dispersing additives. The tank has an insulated sinusoidal bottom wall and is filled with water. The conduction mode of water has been improved with dispersing nanoparticles. To calculate the conductivity, the fraction and configurations of powders were considered as variables. The equations for modeling were simplified by considering the assumption of neglecting convection mode. Galerkin modeling incorporating implicit methods has been selected to achieve the modeling. With increasing ϕ form 0.02 to twice amount, the time of freezing declines around 16.9 %. If the tank is filled with water, it takes 300.06 s to reach full solidification. The rate of process enhances about 32.61 % with loading nanoparticles with blade shape of blade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.