Abstract
A kinematic method of representing the three-dimensional solar wind flow is devised by taking into account qualitatively the stream-stream interaction which leads to the formation of a shock pair. Solar wind particles move radially away from the Sun, satisfying the frozen-magnetic field condition. The uniqueness of the present approach is that one can incorporate both theoretical and observational results by adjusting the parameters involved and that a self-consistent data set can be simulated. One can then infer the three-dimensional structure of the solar wind which is vital in understanding the interaction between the solar wind and the magnetosphere, and it is for this reason that the present kinematic method is devised. In the first part of this paper, the present kinematic method is described in detail by demonstrating that the following solar wind features can be simulated: (i) Variations of the solar wind quantities (such as the solar wind speed, the density and the IMF vector), associated with the solar rotation, at the Earth; (ii) the solar wind flow pattern in the meridian planes; (iii) the three-dimensional structure of the corotating interaction region (CIR); and (iv) the three-dimensional structure of the warped solar current sheet. In Section 2, the three-dimensional structure of solar wind disturbances are studied by introducing a flare-generated high speed stream into the two-stream model of the solar wind developed in Section 1. The treatment of the stream-stream interaction is generalized to deal with a flare-generated high speed stream, yielding a shock pair. The shock pair causes three-dimensional distortion of the solar current sheet as it propagates outward from the Sun. It is shown that a set of characteristic time variations of the solar wind speed, density, the interplanetary magnetic field magnitude B and angles Θ (theta) and gf (phi) result at the time of the passage at the location of the Earth for a given set of flare conditions. These quantities allow us to compute the solar wind-magnetosphere energy coupling function ɛ. Time variations of the two geomagnetic indices AE and Dst are then estimated from ɛ. The simulated geomagnetic storms are compared with observed ones. In the third part, it is shown that recurrent geomagnetic storms can reasonably be reproduced, if fluctuating components of the interplanetary magnetic field (IMF) are superposed on the kinematic model of the solar wind developed in the first part. As an example, we simulate the fluctuating components by linearly polarized Alfven waves and by random variations of the IMF angle Θ (theta). Characteristics of the simulated and observed geomagnetic storms are discussed in terms of the simulated and observed AE and Dst indices. If the fluctuating components of the IMF can generally be identified as hydromagnetic waves, they may be an important cause for individual magnetospheric substorms, while the IMF magnitude B and the solar wind speed V modulate partially the intensity of magnetospheric substorms and storms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have