Abstract

Analytical solutions of the Ishimaru's parabolic equation for the coherence function of the electromagnetic field, which describe the temporal properties of the pulse at the output of a heterogeneous non-dissipative medium, are considered. A generalization of the approach used in the Ishimaru model to describe the time evolution of a monochromatic electromagnetic pulse enveloping in homogeneous non-dissipative media is obtained for the case of non-homogeneous non-dissipative media. Thus, an attempt was made to take into account the influence of the heterogeneity of the medium on the shape of the resulting pulse. When solving the given problem, the difficulties associated with the calculation of the continuous integral arising in the space of diffusion trajectories were overcome. This made it possible to obtain an explicit expression for the Green's function of the task and to build a computational algorithm based on which a number of numerous experiments were conducted. The analysis of the work was carried out based on the apparatus of quadratic integral functionals based on the solutions of differential stochastic equations. In the paper, the invariant temporal properties of the envelope of monochromatic electromagnetic pulses recorded after passing through a flat layer of a scattering heterogeneous medium, i.e., properties that remain unchanged when the parameters of the medium vary, in particular, the distribution of the concentration of scattering centers. The dynamics of the formation of time plumes of the scattered wave, in which the tail part is located in the peripheral time area, were analyzed. When propagating at the speed of transformation of the wave front, it reflects the appearance of the layers of the scattering region and its longitudinal shape. It is noted that the development of the proposed approximation approach to the processes affecting the time delay of electromagnetic pulses can be the accounting for the attenuation of radiation during its propagation in an inhomogeneous absorbing medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.