Abstract

In article the possibility of using neural networks in the field of increasing the energy performance of a four-wire power supply system with an uneven load in the phases is being investigated. An uneven load in the phases causes asymmetry of currents in the network and contributes to the increase in the current in the neutral wire, which has an extremely negative effect on both the supply itself and its consumers. To eliminate asymmetry and reduce the current in the neutral wire, you can connect a symmetrical compensating device. Such a device is a set of reactive elements, the parameters of which are determined by search optimization. To determine the type of the required element, the defined parameters are recalculated. That is, the solution of such a problem consists of two component sub-problems – structural and parametric synthesis. This approach provides a high accuracy of calculations, but has a significant drawback: the calculations are cumbersome. In order to simplify the solution of the synthesis problem, it makes sense to determine the type of elements using neural networks, which will significantly reduce the time and resources spent on calculating the values of the parameters of the symmetrical compensating device. The subject of the article is the study of the possibility of using neural networks to predict the types of reactive elements of the symmetrical compensating device. During of the study, the parameters and type of neural network were determined, which provide the most accurate prediction of the topology of the structure of the symmetric-compensating device. The input parameters of the neural network were formed from sets consisting of eight parameters – resistances and inductances of the transmission lines and the neutral wire. The target matrix was formed from a set of data sets consisting of six elements containing information on the types of elements connected (0 – capacitor, 1 – inductance) between phases and between phases and the neutral wire. During research, the results of a quasi-solution were obtained, the values of which turned out to be commensurate with the accurate calculations for determining the structure of the symmetrical compensating device of the power supply system with a zero wire. This indicates the high quality of the developed neural network. Applying the minimax strategy to the received results provides an opportunity to reduce the received values to 0 and 1 to ensure clarity of the results obtained by the neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.