Abstract

The study of the physiological characteristics of the auditory nerve fibers is fundamental to understand their capability to encode sounds. These characteristics include their spontaneous firing rate, their threshold, and their dynamic range. Although it is possible to perform in vitro recordings of these characteristics in different cell models, it is complicated to obtain in vivo measurements of them directly from the cochlea. For example, the apex of the cochlea since it is an unreachable region which is vulnerable to surgical trauma that could result in altered recordings. In this paper, the behavior of Pillar and Modiolar fibers of the auditory nerve were simulated in response to tone bursts of different frequencies and intensities. The proposed model allowed us to associate the basal firing rates with the physiological characteristics of the different auditory nerve fibers. This is especially important since some noise-associated hearing losses, such as acoustic trauma, have been explained as selective fiber damages.Clinical Relevance- Models that describe the properties of auditory nerve fibers are important to study specific aspects of maturation as well as the causes of sensorineural hearing loss in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call