Abstract

The impact of refrigeration systems on the environment can be reduced by (a) the use of alternative refrigerants which are less harmful to the environment and (b) the optimization of systems and control strategies to deliver increased levels of energy efficiency. Mathematical modelling offers the opportunity to test the performance of systems under different operating conditions and with alternative refrigerants. Dynamic models allow comparison of both transient and steady state behaviour and this is of particular importance for liquid chillers since these systems can operate under transient conditions for long periods. This paper covers the development of a general dynamic model for the simulation of liquid chillers. Brief descriptions of the system component models are given, including a semihermetic reciprocating compressor and thermostatic expansion valve as well as a shell-and-tube evaporator and condenser. The paper demonstrates the application of the model to simulate the performance of a liquid chiller retrofitted with a range of alternative refrigerants. The performance of the system is determined in terms of cooling capacity, power consumption and coefficient of performance for a range of different operating conditions. The relative performance of each refrigerant is discussed and the preferred alternative identified for typical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call