Abstract
Solving global water shortages has become an urgent challenge, hindering sustainable development. Therefore, comparing different solar still designs from application and economic perspectives is necessary. Solar distillation is considered a major innovation in the alternative energy sector for purifying brackish or brine water into clean water. Despite the extensive literature on improved solar stills, determining the most efficient designs for residential and industrial applications remains difficult. This review compares the productivity of spherical, hemispherical, and tubular solar still designs. The aim is to study the factors that influence the efficiency of each type and to analyze recent research and results obtained under different conditions. The results show that innovations in solar distillation design can take many forms to improve efficiency and productivity. For example, adding parabolic mirrors can increase productivity in spherical, hemispherical, and tubular stills by 35 to 70%. Likewise, innovative designs such as rotating spheres and changing bowl shapes significantly increased the productivity of spherical and hemispherical stills. Likewise, retrofitting a still with vacuum generation technology can significantly increase yields by 50 to 70%. In addition, using nanomaterials, especially nanophase change materials (NPCM), has increased the efficiency of the spherical and tubular stills by 116.5%, producing 7.62 kg/m2 per day. Therefore, the NPCM-equipped model was still the most efficient option among the three designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.