Abstract

For some specific applications in ultrasonic non destructive evaluation, EMATs (ElectroMagnetic Acoustic Transducers) are very useful for generating and receiving ultrasonic waves. EMAT works without any contact and liquid coupling. Various surface or bulk waves with any arbitrary polarities and orientations may be generated by changing the orientation of the magnets and the coils. Unfortunately, these types of probes show a poor sensitivity as receivers. CEA LIST has developed simulation tools, based on semi-analytical models dedicated to eddy current and ultrasonic testing, in order to predict signals obtained when inspecting planar structures. The first step of these developments concerns the inspection of conducting non-ferromagnetic materials. By combining eddy currents due to coils with the static magnetic field provided by magnets, the 3D Lorentz's force distribution is computed in the time domain and used as input for the semi-analytical ultrasonic models to compute the simulation of ultrasonic bulk waves and flaw interaction in the piece. This communication presents a specific configuration for our first experimental validation. The computation time is sufficiently low to perform parametric studies to improve the performances of the EMAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.