Abstract

In principle, apart from laser generated ultrasound, two types of transducers, electromagnetic acoustic transducers (EMAT) and piezoelectric transducers, are applied in ultrasonic NDT. Piezoelectric transducers are primarily used to generate pressure, shear vertical, and Rayleigh waves; whereas electromagnetic acoustic transducers are primarily used to generate shear horizontal as well as Rayleigh waves. This paper presents numerical results for both transducer types in 2-D applying the EFIT code (EFIT: Elastodynamic Finite Integration Technique), which has been developed to simulate in 2-D the SH case and P-SV case separately. Three different cases will be studied in detail: (1.) detection of a backwall breaking notch in an isotropic test block, (2.) crack detection in an isotropic pipeline, and (3.) detection of a cracking an austenitic weld. In case (1.) and (3.) different wave modes (P-, SV-, and R-wave) as well as different inclination angles are used, whereas in case (2.), different wave modes are generated (guided SH-waves and R-waves). The numerical results will be validated against measurements if available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call