Abstract

In the study of the spreading depression (SD) wave phenomenon and its dynamics, it is necessary to describe the ionic movements along the extracellular space, as well as between this and the intracellular space. In both cases, the ionic movement includes a double coupling involving the concentration and the potential gradients and hence must be described by electrodiffusion mechanisms. Based on this, the effects of the ionic composition on the characteristics of the wave propagation can be predicted. The influence of varying extracellular sodium and chloride concentrations on the velocity of propagation of the SD wave was investigated by simulation. The results achieved are close to the experimental measurement from the literature. These findings suggest the potentiality of the model proposed in supporting the interpretation of experimental data in neuronal tissues, particularly the SD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.