Abstract
The results of 2.5D-simulation of the dynamics of particles of a high-current ion beam moving in a magnetic field of acute-angled geometry (cusp), compensated in charge and current by an electron beam injected along the radius onto the axis from the periphery, uniformly in azimuth, are presented. The influence of own space charge fields and polarization fields on the dynamics of ions is clarified. It is shown that at high densities of the electron and ion beams, the electron beam injected into the cusp together with the ion beam, moving along the magnetic field lines, drags the ion beam away from the axis to the periphery into the region of zero magnetic field. At the exit from the cusp, the electron beam injected along the radius onto the axis drifts along the axis in a uniform magnetic field, while the ion beam performs oscillatory motion by radius in the crossed the electric field of the electron beam space charge and the longitudinal magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.