Abstract

Abstract An analysis of the April 26, 1986 accident at the Chernobyl-4 nuclear power plant in the Soviet Union is presented. The peak calculated core power during the accident was 550 000 MW t . The analysis provides insights that further understanding of the plant behavior during the accident. The plant was modeled with the RELAP5/MOD2 computer code using information available in the open literature. RELAP5/MOD2 is an advanced computer code designed for best-estimate thermal-hydraulic analysis of transients in light water reactors. The Chernobyl-4 model included the reactor kinetics effects of fuel temperature, graphite temperature, core average void fraction, and automatic regulator control rod position. Preliminary calculations indicated the effects of recirculation pump coast down during performance of a test at the plant were not sufficient to initiate a reactor kinetics-driven power excursion. Another mechanism, or “trigger” is required. The accident simulation assumed the trigger was recirculation pump performance degradation caused by the onset of pump cavitation. Fuel disintegration caused by the power excursion probably led to rupture of pressure tubes. To further characterize the response of the Chernobyl-4 plant during severe accidents, simulations of an extended station blackout sequence with failure of all feedwater are also presented. For those simulations, RELAP5/MOD2 and SCDAP/MOD1 (an advanced best-estimate computer code for the prediction of reactor core behavior during a severe accident) were used. The simulations indicated that fuel rod melting was delayed significantly because the graphite acted as a heat sink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.