Abstract
PurposeThe well-operating condition of journal bearing is the assurance to keep superior performance of water-lubricated twin-screw compressor. To design the journal bearing more reasonably for this type of compressor, this paper aims to study the effects of rotating speed and design parameters on bearing characteristics, considering surface roughness and bending deformation of the shaft at the same time.Design/methodology/approachThe average Reynolds equation considering the effect of surface roughness is adopted and solved by finite difference method and successive over-relaxation method to calculate pressure distribution with real bearing shapes and boundary conditions. The bending deformation of the shaft is calculated using simply supported beam model of variable cross-section.FindingsThe dynamic lubrication characteristics of four water-lubricated journal bearings in twin-screw air compressor are calculated and analyzed. In addition, the static characteristics of journal bearing including friction coefficient, film thickness ratio distribution and water film pressure distribution are calculated numerically with different rotating speed and design parameters. Moreover, some design principles of water-lubricated bearing for twin-screw compressor are put forward.Originality/valueThe lubrication characteristics of the water-lubricated journal bearing in twin-screw air compressor are calculated considering surface roughness and bending deformation of the shaft at the same time. The paper’s results may provide design guidelines for journal bearing in this kind of twin-screw compressor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have