Abstract

The laws and mechanism of fracture of coarse-grain and ultrafine-grain titanium under shock-wave loading has been investigated. For the shock wave generator a "SINUS-7" accelerator emitting a nanosecond relativistic highcurrent electron beam was used. To test the high-velocity impact at velocities of the order of 2500 m/s, a ballistic installation of caliber 23 mm was used. The mathematical simulation of the high-velocity interaction was carried out with account for the fracture, the phase transitions, and the dependence of the strength characteristics of materials on the internal energy within the framework of continuum mechanics. For both granular structures the general laws and features of the fracture have been established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.