Abstract

In some gas–solid reactions, a new solid substance is produced. The product acts as a shield and prevents the collision between gas and solid reactants which further causes an incomplete reaction. If the molar volume of the new product differs from the solid reactant, the inner structure of porous media is changed as well. In this paper, we discuss such gas–solid reactions in porous media using the two-dimensional lattice gas cellular automata FHP-III model. We simulate the fluid flow and chemical reaction in different porous media. We also show the effects of porosity and morphology of the solid, and reaction probability on the reaction process. Results obtained from the simulations agree closely with the theory of gas–solid reactions and diffusion theories. Hence, the proposed model is a good choice to simulate gas–solid chemical reactions in porous media at the mesoscopic level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call