Abstract
ABSTRACTSimulation of multivariate distributions is important in many applications but remains computationally challenging in practice. In this article, we introduce three classes of multivariate distributions from which simulation can be conducted by means of their stochastic representations related to the Dirichlet random vector. More emphasis is made to simulation from the class of uniform distributions over a polyhedron, which is useful for solving some constrained optimization problems and ha`s many applications in sampling and Monte Carlo simulations. Numerical evidences show that, by utilizing state-of-the-art Dirichlet generation algorithms, the introduced methods become superior to other approaches in terms of computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.