Abstract

Nanofluids are the fluid suspensions in nanoparticles. A considerable enhancement in their features is less nanoparticle concentrations. Various studies on nanofluids focused on representing their performance with respect to the functions — here enhancing straight heat transfer was critical, like that in nuclear reactors, transportation, different industrial settings, biology, food and electronics. Hence, this consideration analyzes the utilization of the novel mathematical method, called the bvp4c method by viscous heat energy research in Buongiorno-modeled nanoliquid confined by the apt permeable plate along with slip mechanism. The thermophoresis and Brownian dispersion affects are again assumed. This transfer of solutal and thermal energy was dependent on the appreciable effect on heat source, variable chemical reactions and nonlinear thermal radiation. The dimensional model of partial differential equations (PDEs), applied to precise related applications, had been adapted into ordinary differential equations (ODEs). This modified Nusselt number decreases with increasing viscous heating, thermal radiation, thermophoresis parameter and Brownian motion, always it rises due to increasing temperature ratio parameter. The validation of the outcomes was attained with past solutions by free convectional flow and non-magnetic research. There are many functions in petroleum industries and engineering like electroplating, chemical processing of substantial metals and solar water heaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call