Abstract

Modeling the strengthening effect of grain boundaries (Hall–Petch effect) in metallic polycrystals in a physically consistent way, and without invoking arbitrary length scales, is a long-standing, unsolved problem. A two-scale method to treat predictively the interactions of large numbers of dislocations with grain boundaries has been developed, implemented, and tested. At the first scale, a standard grain-scale simulation (GSS) based on a finite element (FE) formulation makes use of recently proposed dislocation-density-based single-crystal constitutive equations (“SCCE-D”) to determine local stresses, strains, and slip magnitudes. At the second scale, a novel meso-scale simulation (MSS) redistributes the mobile part of the dislocation density within grains consistent with the plastic strain, computes the associated inter-dislocation back stress, and enforces local slip transmission criteria at grain boundaries. Compared with a standard crystal plasticity finite element (FE) model (CP-FEM), the two-scale model required only 5% more CPU time, making it suitable for practical material design. The model confers new capabilities as follows: (1) The two-scale method reproduced the dislocation densities predicted by analytical solutions of single pile-ups. (2) Two-scale simulations of 2D and 3D arrays of regular grains predicted Hall–Petch slopes for iron of 1.2 ± 0.3 MN/m 3/2 and 1.5 ± 0.3 MN/m 3/2, in agreement with a measured slope of 0.9 ± 0.1 MN/m 3/2. (3) The tensile stress–strain response of coarse-grained Fe multi-crystals (9–39 grains) was predicted 2–4 times more accurately by the two-scale model as compared with CP-FEM or Taylor-type texture models. (4) The lattice curvature of a deformed Fe-3% Si columnar multi-crystal was predicted and measured. The measured maximum lattice curvature near grain boundaries agreed with model predictions within the experimental scatter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call