Abstract

This work presents a novel full-vectorial imaginary-distance beam propagation method based on the multidomain pseudospectral scheme, for the first time, to study the modal characteristics of dielectric optical waveguides. The proposed method divides the transverse plane into several subdomains with uniform refractive indices, and expands the optical field in each subdomain in terms of a set of suitable basis functions. Accordingly, the complicated cross-coupling terms, which are required by the finite difference or finite element schemes, can be removed from the full-vectorial formulations. However, the coupling effect can be restored by matching the physical interface conditions. Moreover, to identify the higher-order modes, the residual traces of the preceding lower-order modes are subtracted from the calculated optical fields in each propagation step to suppress the rapid growth of the lower-order modes. Numerical examples of the two-dimensional slab waveguides demonstrate that the present approach yields a highly accurate propagation constant. When applied to three-dimensional rib waveguides the present scheme yields results that remarkably agree with the reliable values obtained from the modal transverse resonance method and finite element scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call