Abstract

Two schemes are developed to improve the computational accuracy of the full-vectorial imaginary-distance beam propagation method (FV-ID-BPM). In the first scheme, the cross-coupling terms (CCTs) demanded for the FV analysis are expressed in explicit forms, which are independent of specific types of waveguides, by using an improved finite-difference formula. In the second one, the generalized Douglas (GD) scheme is adopted for discretizing the second-order partial derivatives in the FV-ID-BPM equations. A detailed comparative study between the two schemes in improving the computational accuracy is performed by taking a strongly-guiding rib waveguide as a testing example. The highest accuracy is demonstrated in case of the combination of the two schemes. Nevertheless, the improved FD formula for the CCTs is proved to play a much more significant role than the GD scheme in improving the computational accuracy. Moreover, the effectiveness of the GD scheme diminishes as the FD grid is refined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call