Abstract
A mathematical model is developed for the carrier facilitated transport of metal ions through a flat sheet support liquid membrane (FSSLM) in transition state from Fick's second law. From this model, and from Fick's first law, the flow density is derived as a non-linear concentration gradient. Both expressions, concentration and flow density, depend on the thickness of the membrane and on time. Since the rate constant plays an important role in the model, it is considered as the parameter that controls the system and an equation for it is obtained. This equation explains the velocity of the co-transport process. The proposed model takes into account the species co-transported together with the metal ions. An equation for the number of moles of this species is obtained as a function of the metal species. The concentration gradient of this species explains the behaviour of pH in the feed phase during the process. The model is tested against experimental data corresponding to the transport of metal anions in acidic solution and it is shown that the co-transport process is reproduced with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.