Abstract

This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantitatively measured by an image analysis software. Quantified results were used to compare two systems in terms of ability to prevent bubble formation and entrainment. Both water modeling and computer simulating methods indicated that highest turbulences in bottom- and top-poured systems form in first initially pouring times. According to the water modeling results amount of bubble values was 40 and 18 percent for top-poured and bottom-poured systems, respectively. Then the Ni-base super-alloy IN939 is poured by investment casting in bottom- and top-poured systems and compared with each other. The results stated that bottom-poured system had higher mechanical properties compared to top-poured one. Ultimate tensile strength for the former was 820 MPa while for the part which was cast by bottom-poured system it was 850 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.