Abstract

Micromachining technology has greatly benefited from the success of developments in implantable biomedical microdevices. In this paper, microelectromechanical systems (MEMS) capacitive pressure sensor operating for biomedical applications in the range of 20–400 mm Hg was designed. Employing the microelectromechanical systems technology, high sensor sensitivities and resolutions have been achieved. Capacitive sensing uses the diaphragm deformation-induced capacitance change. The sensor composed of a rectangular polysilicon diaphragm that deflects due to pressure applied over it. Applied pressure deflects the 2 µm diaphragm changing the capacitance between the polysilicon diaphragm and gold flat electrode deposited on a glass Pyrex substrate. The MEMS capacitive pressure sensor achieves good linearity and large operating pressure range. The static and thermo electromechanical analysis were performed. The finite element analysis data results were generated. The capacitive response of the sensor performed as expected according to the relationship of the spacing of the plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.