Abstract

Simulation on the properties of localized surface plasmon resonance (LSPR) of different sized hexagonal Ag nanoarrays embedded in the amorphous oxidized silicon nitride(a-SiNx:O) matrix has been carried out by using COMSOL Multiphysics and FDTD Solution simulation software. Through the calculation of the scattering and absorption cross section of Ag array with different radius, we find that the position of extinction peaks red-shift from 460 to 630 nm when the radius of nanoparticles of hexagonal Ag arrays increases from 25 to 100 nm with the distance between particles 100 nm. The enhanced scattering cross section of the localized surface plasmon (LSP) and blue-shift of the extinction peak can be obtained by tunning the distance between Ag nanoparticles from 100 to 50 nm with the radius of Ag nanoparticles fixed at 50 and 75 nm, respectively. However the mismatch between the extinction peak of hexagonal Ag nanoarrays and the blue light emission of 460 nm from a-SiNx:O films still exists. The novel overlap between the scattering cross section of LSP from hexagonal Ag arrays with a radius of 25 nm and the blue light emission of a-SiNx:O films at 460 nm further confirms that the hexagnoal Ag arrays with a radius of 25 nm is the optimal option to enhance the blue light emission from a-SiNx:O films. Therefore, strong coupling between LSP and blue light emission at 460 nm from a-SiNx:O films with a thickness of 70 nm can be realized when the radius of Ag nanoparticle is 25 nm. We also investigate the enhancement of near field radiative intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm. When the excitation wavelength is 460 nm, the maximum enhancement of near field intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm reaches 1.46104 V/m. The calculated polarization intensity and charge distribution of hexagonal Ag nanoparticle with a radius of 25 nm embedded in a-SiNx:O films reveal that the enhancement of electromagnetic field-intensity is through the dipolar plasmon coupling with the excitons in a-SiNx:O films in bright field mode under the excitation of 460 nm. Further calculation of perpendicular radiative intensity for LSP from the hexagonal Ag array with a radius of 25 nm embedded in a-SiNx:O films indicates that the maximum radiative intensity can be realized in a-SiNx:O matrix with an optimum thickness of 30 nm for a-SiNx:O films. Our theoretical calculations and analysis can provide valuable reference for the design of Si-base blue LED with light emission around 460 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.