Abstract

Atherosclerosis, due to the permeation of low-density lipoprotein (LDL) particles into the arterial wall, is one of the most common and deadly diseases in today's world. Due to its importance, numerous studies have been conducted on the factors affecting this disease. In this study, using numerical simulation, the effects of Wall Shear Stress (WSS), non-Newtonian behavior of blood, different values of hematocrit and blood pressure on LDL permeation into the arterial wall layers are investigated in a 4-layer wall model of a coronary bifurcation. To obtain the velocity and concentration fields in the fluid domain, the Navier-Stokes, Brinkman, and mass transfer equations are numerically solved in the lumen and wall layers. Results show that it is important to consider the effects of WSS on transport properties of endothelium layer in bifurcations and this leads to completely different concentration profiles compared to the constant properties model. Our computations show that a giant accumulation of LDL in the intima layer of the outer wall of the left anterior descending artery, especially in low WSS regions, may lead to atherosclerosis. It is also, necessary to consider the non-Newtonian behavior of blood in bifurcations due to its direct effect on WSS. A pressure-induced increase in the half-width of leaky junctions may be responsible for the higher risk of atherosclerosis in hypertension. In addition, it is shown that the dominant mechanism in LDL permeation into the wall is convection, and also, hypertension increases the effect of mass transfer by convection mechanism more than the diffusion mechanism. Furthermore, our results are consistent with various clinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call