Abstract

Arteriovenous graft patency is limited by terminal occlusion caused by intimal hyperplasia (IH). Motivated by evidence that flow disturbances promote IH progression, a modular anastomotic valve device (MAVD) was designed to isolate the graft from the circulation between dialysis periods (closed position) and enable vascular access during dialysis (open position). The objective of this study was to perform a preliminary computational assessment of the device ability to normalize venous flow between dialysis periods and potentially limit IH development and thrombogenesis. Computational fluid dynamics simulations were performed to compare flow and wall shear stress (WSS) in a native vein and MAVD prototypes featuring anastomotic angles of 90° and 30°. Low WSS (LWSS) regions prone to IH development were characterized in terms of temporal shear magnitude (TSM), oscillatory shear index (OSI), and relative residence time (RRT). Thrombogenic potential was assessed by investigating the loading history of fluid particles traveling through the device. The closed MAVD exhibited the same flow characteristics as the native vein (0.3% difference in pressure drop, 3.5% difference in surface-averaged WSS). The open MAVD generated five LWSS regions (TSM <0.5 Pa) exhibiting different degrees of flow reversal (surface-averaged OSI: 0.03-0.36) and stagnation (max RRT: 2.50-37.16). Reduction in anastomotic angle resulted in the suppression of three LWSS regions and overall reductions in flow reversal (surface-averaged OSI <0.21) and stagnation (max RRT <18.05). This study suggests the ability of the MAVD to normalize venous flow between dialysis periods while generating the typical hemodynamics of end-to-side vein-graft anastomoses during dialysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.